- 0.0 EXECUTIVE SUMMARY
- 0.1 Program Objectives and Participants
- 0.1.1 The Pan-Arctic Region: Highlights of the Literature Review
- 0.1.1.1 Behavior and Fate of Oil in the Arctic
- 0.1.1.2 VECs and Ecotoxicity
- 0.1.2 Role of Ecosystem Consequence Analyses in NEBA Applications for the Arctic
- 0.1.2.1 Arctic Population Resiliency and Potential for Recovery
- 0.2 Priority Recommendations to Enhance NEBA Applications in the Arctic
- 0.2.1 Development of ARCAT Matrices
- 0.2.2 Influence of Oil on Unique Arctic Communities
- 0.2.3 Biodegradation in Unique Communities
- 0.2.4 Modeling of Acute and Chronic Population Effects of Exposure to OSRs
- 0.3 Further Information
- 1.0 THE PHYSICAL ENVIRONMENT
- 1.1 Introduction
- 1.1.1 The Arctic Ocean, Marginal Seas, and Basins
- 1.2 Knowledge Status
- 1.2.1 The Circumpolar Margins
- 1.2.2 Arctic Hydrography
- 1.2.3 Ice And Ice-Edges
- 1.2.4 Seasonality: Productivity and the Carbon Cycle in the Arctic
- 1.3 Future Research Considerations
- 1.3.1 Priority Recommendations to Enhance NEBA Applications in the Arctic
- 1.4 Further Information
- 2.0 ARCTIC ECOSYSTEMS AND VALUABLE RESOURCES
- 2.1 Introduction
- 2.2 Knowledge Status
- 2.2.1 Habitats of the Arctic
- 2.2.2 Arctic Food Webs
- 2.2.2.1 Pelagic Communities
- 2.2.2.2 Benthic and Demersal Communities
- 2.2.2.2 Sea-ice Communities
- 2.2.2.4 Mammals and Birds
- 2.2.2.5 Communities of Special Significance
- 2.2.3 Pelagic Realm
- 2.2.3.1 Phytoplankton
- 2.2.3.2 Zooplankton
- 2.2.3.3 Neuston
- 2.2.3.4 Other Pelagic Invertebrates
- 2.2.3.4.1 Krill
- 2.2.3.4.2 Amphipods
- 2.2.3.4.3 Cephalopods
- 2.2.3.4.4 Jellyfish
- 2.2.3.5 Fish
- 2.2.3.5.1 Pelagic Fish
- 2.2.3.5.2 Anadromous Fish
- 2.2.3.5.3 Demersal Fish
- 2.2.3.5.4 Deep-Sea Fish
- 2.2.3.6 Marine Mammals
- 2.2.3.6.1 Bowhead Whale (Balaena mysticetus)
- 2.2.3.6.2 White Whale (Delphinapterus Leucas)
- 2.2.3.6.3 Narwhal (Monodon monoceros)
- 2.2.3.6.4 Ice Seals
- 2.2.3.6.5 Walrus (Odobenus rosmarus)
- 2.2.3.6.6 Orca Whales (Orcinus orca)
- 2.2.3.6.7 Polar Bear (Ursus maritimus)
- 2.2.3.7 Birds
- 2.2.3.7.1 Black-legged kittiwakes (Rissa tridactyla)
- 2.2.3.7.2 Black Guillemots (Cepphus grille)
- 2.2.3.7.3 Thick billed Murres (Uria lomvia)
- 2.2.3.7.4 Northern Fulmar (Fulmarus glacialis)
- 2.2.3.7.5 Common Eider (Somateria mollissima)
- 2.2.3.7.6 Little Auk/Dovekie (Alle alle)
- 2.2.3.7.7 Glaucous gull (Larus glaucescens)
- 2.2.3.7.8 Arctic jaeger (Stercorarius parasiticus)
- 2.2.4 Benthic Realm
- 2.2.4.1 Intertidal Communities
- 2.2.4.2 Shelf and Deepwater Communities
- 2.2.4.3 Mollusca
- 2.2.4.4 Polychaetes
- 2.2.4.5 Amphipods
- 2.2.4.6 Decapod Crustaceans
- 2.2.4.7 Echinoderms
- 2.2.5 Sea-Ice Realm
- 2.2.5.1 Ice Algae
- 2.2.5.2 Sympagic Copepods
- 2.2.5.3 Ice Amphipods
- 2.2.5.4 Pelagic Copepods
- 2.2.5.5 Sympagic Fish
- 2.2.5.6 Mammals
- 2.2.5.7 Birds
- 2.2.6 VECs of Arctic Marine Environments
- 2.2.6.1 Seasonal Distribution Patterns of Arctic Marine Populations
- 2.3 Future Research Considerations
- 2.3.1 Priority Recommendations to Enhance NEBA Applications in the Arctic
- 2.4 Further Information
- 3.0 THE TRANSPORT AND FATE OF OIL IN THE ARCTIC
- 3.1 Introduction
- 3.2 Knowledge Status
- 3.2.1 Weathering of Oil Spilled in Ice
- 3.2.2 Oil in Ice Interactions
- 3.2.3 Oil on Arctic Shorelines
- 3.2.4 Oil-Sediment Interactions
- 3.3 Future Research Considerations
- 3.3.1 Priority Recommendations for Enhanced NEBA Applications in the Arctic
- 3.4 Further Information
- 4.0 OIL SPILL RESPONSE STRATEGIES
- 4.1 Introduction
- 4.1.1 Environmental Uniqueness of the Arctic Region in Relation to OSR
- 4.2 Knowledge Status - Impact of OSRs
- 4.2.1 Natural Attentuation
- 4.2.1.1 Potential Environmental Impact of Untreated Oil
- 4.2.1.2 Conclusions on Natural Attenuation
- 4.2.2 Mechanical Recovery and Containment
- 4.2.2.1 Environmental impacts from Mechanical Recovery and Containment
- 4.2.2.2 Conclusions
- 4.2.3 In-Situ Burning and Chemical Herders
- 4.2.3.1 Potential environmental and human health effects of ISB residues and unburnt oil
- 4.2.3.2 Environmental Impact of Herders
- 4.2.3.3 Conclusions on ISB and Herders
- 4.2.4 Improving Dispersion of Oil
- 4.2.4.1 Impact of Chemically Dispersed Oil
- 4.2.4.2 Conclusions on Chemical Dispersion
- 4.2.4.3 Dispersing Oil using Oil Mineral Aggregates (OMA)
- 4.2.4.4 Environmental Impact of OMA formation
- 4.2.4.5 Conclusions on OMA
- 4.3 Future Research Considerations
- 4.3.1 Priority Recommendations for Enhanced NEBA Applications in the Arctic
- 4.4 Further Information
- 5.0 BIODEGRADATION
- 5.1 Introduction
- 5.1.1 The Microbiology of the Arctic Oceans
- 5.1.1.1 Transport routes
- 5.1.1.2 Microbial populations in the Arctic Ocean
- 5.1.2 Microbial Adaptation to Arctic Conditions
- 5.1.2.1 Low temperature and microbial adaptions
- 5.1.2.2 Light and microbial phototrophs
- 5.1.2.3 Marine ice and microbial survival and metabolism
- 5.2 Knowledge Status
- 5.2.1 Biodegradation of Oil in Cold Marine Environments
- 5.2.1.1 Types of Crude Oils
- 5.2.1.2 Surface oil spills
- 5.2.1.2.1 Evaporation
- 5.2.1.2.2 Water solubility
- 5.2.1.2.3 Photooxidation
- 5.2.1.2.4 Sedimentation
- 5.2.1.2.5 Water-in-oil emulsification
- 5.2.1.2.6 Natural dispersion
- 5.2.1.2.7 Oil films
- 5.2.1.3 Microbial Oil-Degrading Populations in Cold Water Environments
- 5.2.1.3.1 Indigenous Microorganism Populations
- 5.2.1.3.2 Population Effects on Oil Degradation
- 5.2.1.4 Hydrocarbon biodegradation in cold marine environments
- 5.2.1.4.1 Seawater
- 5.2.1.4.2 Sediments and soils
- 5.2.1.4.3 Sea ice
- 5.2.1.5 Modeling of biodegradation
- 5.2.1.5.1 Biodegradation in oil spill models
- 5.2.1.5.2 Biodegradation modeling and temperature
- 5.2.1.6 Determination of Biodegradation
- 5.2.1.6.1 Analytical methods for oil compound analyses
- 5.2.1.6.2 Experimental apparatus
- 5.2.1.6.3 Biodegradation data processing
- 5.2.1.7 Persistent Oil Compounds
- 5.2.2 Accelerated Biodegradation
- 5.2.2.1 Biostimulation
- 5.2.2.1.1 Shoreline sediments
- 5.2.2.1.2 Seawater
- 5.2.2.1.3 Marine ice
- 5.2.2.2 Bioaugmentation
- 5.2.2.3 Understanding Processes in Accelerated Biodegradation
- 5.3 Future Research Considerations
- 5.3.1 Priority Recommendations for Enhanced NEBA Applications in the Arctic
- 5.4 Further Information
- 6.0 ECOTOXICOLOGY OF OIL AND TREATED OIL IN THE ARCTIC
- 6.1 Introduction
- 6.1.1 General Methods and Relevant Endpoints in Laboratory Testing
- 6.1.1.1 Test Exposure
- 6.1.1.2 Test Media Preparation
- 6.1.1.2.1 Water Soluble Fractions (WSF)
- 6.1.1.2.2 Water Accommodated Fractions (WAF, CEWAF)
- 6.1.1.2.3 Oil-in-Water Dispersions (Oil Droplets)
- 6.1.1.2.4 Oil Type/Weathering
- 6.1.1.2.5 Exposure Concentrations
- 6.1.1.2.6 Test Organisms
- 6.1.1.2.7 Test Endpoints and Exposures
- 6.1.1.2.8 Data Extrapolation and Population Models
- 6.2 Knowledge Status
- 6.2.1 Species represented in the data set
- 6.2.2 Arctic ecosystem compartments in the dataset
- 6.2.2.1 Pack ice
- 6.2.2.2 Pelagic
- 6.2.2.3 Benthic
- 6.2.3 Review by Taxa
- 6.2.3.1 Phytoplankton and seaweed
- 6.2.3.2 Mysids
- 6.2.3.3 Copepods
- 6.2.3.4 Amphipods
- 6.2.3.5 Benthic organisms
- 6.2.3.6 Fish
- 6.3 Discussion
- 6.3.1 Petroleum related components
- 6.3.1.1 Crude oil
- 6.3.1.2 Single PAH
- 6.3.2 Chemically dispersed oil versus physically dispersed oil
- 6.3.3 Are Arctic species more sensitive than temperate species?
- 6.4 Future Research Considerations
- 6.4.1 Priority Recommendations to Enhance NEBA Applications in the Arctic
- 6.5 Further Information
- 7.0 POPULATION EFFECTS MODELING
- 7.1 Introduction
- 7.2 Knowledge Status
- 7.2.1 Parameters Needed to Assess Potential Responses of VECs to Environmental Stressors
- 7.2.1.1 Transport and fate / exposure potential
- 7.2.1.2 Oil toxicity evaluations / sensitivity
- 7.2.1.3 Population distributions, stressors, and mortality rates
- 7.2.2 Copepod Population Ecology
- 7.2.2.1 Copepod Growth and Development
- 7.2.2.2 Summary of Arctic and Sub-Arctic Copepod Species
- 7.2.3 Copepod Populations
- 7.2.4 Arctic Fish Population Ecology
- 7.2.4.1 Arctic Fish Species Diversity
- 7.2.4.2 Representative Fish Species
- 7.2.5 Application of Population Models
- 7.3 Future Research Considerations
- 7.3.1 Priority Recommendations to Enhance NEBA Applications in the Arctic
- 7.4 Further Information
- 8.0 ECOSYSTEM RECOVERY
- 8.1 Introduction
- 8.2 Knowledge Status
- 8.2.1 Resilience and Potential for Recovery
- 8.3 Future Research Considerations
- 8.3.1 Priority Recommendations for Enhanced NEBA Applications in the Arctic
- 8.4 Further Information
- 9.0 NET ENVIRONMENTAL BENEFIT ANALYSES FOR OIL SPILL
- 9.1 Introduction
- 9.2 Knowledge Status
- 9.2.1 Importance of NEBA Development for Arctic Regions
- 9.2.2 Scope and Applicability
- 9.2.3 Information Required to Utilize the NEBA Process
- 9.2.3.1 Potential oil spill scenarios
- 9.2.3.2 Response resources available
- 9.2.4 Ecological Resources at Risk
- 9.2.5 Social and Economic Relevance
- 9.2.6 Historical uses of NEBA and Case Studies
- 9.2.6.1 Assessing response strategy effectiveness and estimating oil fate and transport
- 9.2.6.2 Assessing the potential impacts and resource recovery rates
- 9.2.7 Historical Spills that Used or Informed NEBA Processes
- 9.2.7.1 A. Experimental: Baffin Island tests in northern Canada
- 9.2.7.2 B. Experimental: TROPICS study
- 9.2.7.3 C. Tanker: Braer Spill
- 9.2.7.4 D. Tanker: Sea Empress spill
- 9.2.7.5 E. Well Blowout: Montara spill (also known as the West Atlas Spill)
- 9.2.8 Potential Challenges to Applying NEBA Processes in the Arctic Environment
- 9.3 Future Research Considerations
- 9.3.1 Priority Recommendations for Enhanced NEBA Applications in the Arctic
- 9.4 Further Information
- APPENDIX: USE OF NEDRA IN CONNECTION TO OIL SPILL CONTINGENCY PLANNING IN NORWAY
- 10.0 SUPPORTING REPORTS
Add notes to:
Or add a reference to download later
4.1 Introduction
This chapter explains the characteristics of the main OSR technologies and summarizes the current knowledge on the potential environmental impacts of the various OSR options to an oil spill in the Arctic region. The focus is on the impact of an at-sea response (as opposed to shoreline clean-up) to support the NEBA process. The response techniques discussed are: natural attenuation, mechanical recovery and containment, in-situ burning (ISB, with and without the use of herders), and physical and chemical dispersion. The equipment and strategies used for these techniques have been reviewed in detail in a recent publication (Potter et al. 2012). Strategies and techniques for recovering and remediating oil in ice have been extensively studied over the past 45 years (Dickins 2004). Two oil spill research projects conducted in the Canadian Beaufort Sea from 1974 to 1981 contributed to the acceptance of in-situ burning as a primary response strategy to deal with spills in ice (Norcor 1975; Dickins and Buist 1981). Examples of previous field experimental studies and accomplishments are presented in Table 1-3 (next page). Of note, is a recent program, oil spill contingency for Arctic and ice-covered waters (JIP on Oil in Ice; Sorstrom et al. 2010) conducted several large scale field experiments assessing the complex interactions of oil, water, and ice with state of the art data collection techniques (Photo 4-5).
Photo 4-5. Field experiment during Oil-in-Ice JIP program (SINTEF)
This review focuses on the effectiveness and associated environmental impacts of these response options when deployed under a variety of Arctic conditions and identifies areas for future research. Special attention is paid to how responses in the Arctic may differ from non-Arctic areas of the world. Increasing collections of experience and data will provide a broader foundation for spill response decisions and help to reduce the overall environmental consequences of a spill.
The main sources of information were technical documents and incident reports supplied by CEDRE’s library, NewFields, and documents available at the Norwegian Environment Agency within the Norwegian Ministry of Climate and Environment.
These documents were categorized into:
- Review or synthesis documents dealing with issues of Oil Spill management in Arctic, or with research needs on the same topic
- Experimental studies of OSR actions that targeted the effects of those responses in cold environments
- Recorded case stories of incidents relevant to assessing impacts of response technologies or Arctic geographies.
Table 4-1. Landmark Field Studies
Project | Year | Location | Spill Characteristics | Ice Type | Process or Response | Achievements | Authors |
---|---|---|---|---|---|---|---|
Interaction of crude oil with Arctic sea ice |
1975 |
Canadian Beaufort |
340 bbl/ 9 spills |
Under fast ice |
Burning & Mechanical |
Oil injected under ice, Oct – May. Oil spreading and entrainment documented by divers and video. Assessed migration, degree of weathering and dissolution. Min oil thickness was 0.8 cm at ice-water interface. Also assessed currents under solid ice. |
Norcor 1975 |
Oil and Gas Under Ice |
1979/80 |
Canadian Beaufort |
116 bbl/ 3 spills |
Landfast Ice |
Subsea Blow-out |
Determined area impacted by a subsea blowout; assessment of in-situ burning as spill response option |
Dickins et al. 1981 |
Baffin Island Oil Spill Project |
1980 |
Baffin Island |
2-8 m3 |
Seasonal |
In-situ burning; natural recovery of shoreline |
5 core studies; field based trials w 3 similar bays w untreated oil, treated oil, and control (included biological, chemical, and physical measurements; burning in melt pools; shoreline study w/ oil and emulsion in intertidal zone |
Blackall and Sergy 1987 |
Behavior of crude oil in pack ice |
1986 |
Canadian East Coast |
18 bbl/ 3 spills |
Pack ice, leads, between floes |
Burning |
The presence of ice dramatically reduced the spreading of oil compared to open water. |
Buist IA, Dickins DF 1987 |
Emulsions in Ice |
1983 |
192 L |
Emulsions were stable: did not inhibit ice formation; retarded natural migration through ice sheet |
Buist et al. 1983 |
|||
Marginal Ice Zone |
1993 |
Norway; Barents Sea |
164 bbl |
Marginal between floes |
Oil Tracking in Ice |
Applied oil spill trajectory model (OILMAP™) to forecast trajectories of oil in pack ice. When wind was off-ice wind speed drift (2.5%) with Ekman veering angle of 35°; with on-ice wind drift was 1.5%, veering angle of 60° |
SINTEF; Singsaas, Brandvik, Daling |
Under-Ice Spill |
2001 |
Sea of Okhotsk |
Light oils |
Under ice floes |
Vertical Migration |
Oil fills under-ice cavities; very small amount migrates to the surface (<1% with 7 -10 cm rise) |
Ohtsuka et al.1999; Ohtsuka et al. 2001; Karlsson et al. 2011 |
Diesel and Fuel Oil |
2005 |
Russian Arctic |
Light Oils |
Ice floe surface |
Evaporation |
Complete evaporation during spring and summer; photo-oxidation more significant with 24 h daylight |
Serova 1992; Ivanov et al.2005 |
Encapsulated Oil |
2005 |
Svalbard |
6 Crude Oils |
Pack ice |
Dissolution |
Water soluble compounds diffused through 110 cm thick ice, but concentrations were low (6 ppb) |
Faksness and Brandvik 2005 |
Predictive Modeling Algorithms |
2004-2009 |
Canada, Ohmsett NJ |
Alaskan crude oils |
Cold water, Ice |
Thickness of oil on calm water; Spreading of oil; Equilibrium of oil thickness on ice; Oil Spreading on ice, on snow; Evaporation on ice, under snow, among drift ice |
Buist et al. 2008; Buist et al. 2009 |
|
Weathering of Oil in Ice |
2009 |
Svalbard |
Statfjord crude |
0, 30, 90% coverage |
Natural Weathering |
Oil in 90% ice had > slick thickness, reduced evaporation; wave dampening reduced emulsification; oil ignitable and chemically dispersible after 60 h |
Brandvik and Faksness 2009 |
In general, the majority of the reviewed documents dealt with the feasibility of the response options under various conditions and the methods that were used or tested to optimize the efficiency of response techniques. It is noted that very few papers focus on a comparison of effects between different environmental compartments as a result of the response action while this is one of the main challenges in NEBA. Next to the potential impacts of oil and oil residues, NEBA should also look into the impacts of the response action itself, which may include access to vulnerable areas and impacts related to logistics.
4.1.1 Environmental Uniqueness of the Arctic Region in Relation to OSR
The Arctic region is characterized by the presence or absence of ice at different times of the year which generates a seasonal regime of ice coverage and ice thickness (AMAP 2007, SL Ross 2012b, Wang et al. 1999). When spilled, the oil fate and behavior will depend on a combination of the ice growth stage and coverage area which together can reduce or stop the weathering processes and limit the spreading. In some cases, the oil can be trapped by the ice and remain fresh and unweathered until the melting season.
The extent and nature of ice coverage also greatly affects the OSR options that might be considered and their operational effectiveness (SL Ross 2011). While shorelines and lagoons are not unique to the Arctic these are critical environmental compartments that have seasonal congregations of valuable ecosystem components that create significant risks to populations (refer to Sections 2, 7 and 8). The importance of these seasonally used compartments and the logistical challenges of positioning manpower and equipment at remote locations that ultimately limit response feasibility and/or timing suggest that response options need to be selected to avoid contact with these environmental compartments during those seasonal uses (refer to Sections 7, 8 and 9). Surface or subsurface oil releases will be influenced by the presence of ice (refer to Section 3) and will impact both environmental compartments and key species groups differently depending on location and density of the ice cover and seasonal use of those environmental compartments by VECs (refer to Section 2). Depending on the season of the year and the site of released oil, an incident may result in different types or magnitudes of environmental impacts. Generally speaking, “Arctic habitats are characterized by extreme seasonal change, which drives extensive migrations on land and at sea. The seasonal patterns of movement to, from, and within the Arctic determine to a large extent the vulnerability of Arctic ecosystems to oil spills. These patterns of seasonal activity and movement must be taken into account in selecting response strategies designed to reduce or avoid environmental impacts from oil and gas activities” (AMAP 2007).
Arctic species are subject to potentially dense concentrations (e.g. for birds, mammals, and fish) according to migrations patterns and corresponding ice regime. Ice edges are important locations for concentrating marine mammals and birds as a result of high biological activity. In addition, possibly due to the low ambient temperature, there is a low turnover for many species and consequently population recovery can be slow. As an example, some Arctic fish spawn under ice in winter; their eggs incubate under ice and hatch when ice begins to melt and plankton blooms occur. An oil spill in such spawning areas and during early life stages could severely reduce that year’s recruitment (AMAP 2007). The presence and the movements of the different species in both localized and regional areas is generally not known to the extent needed to make some of the important tradeoff decisions when selecting spill response options. Baseline studies are often conducted as part of the Environmental Impact Assessment (EIA) process that is undertaken in areas where oil and gas production is envisaged or in the process of being developed. Mapping (spatial and temporal) the ecological vulnerability of Arctic habitats in these areas will contribute significantly to regional oil spill response planning.