- 0.0 EXECUTIVE SUMMARY
- 0.1 Program Objectives and Participants
- 0.1.1 The Pan-Arctic Region: Highlights of the Literature Review
- 0.1.1.1 Behavior and Fate of Oil in the Arctic
- 0.1.1.2 VECs and Ecotoxicity
- 0.1.2 Role of Ecosystem Consequence Analyses in NEBA Applications for the Arctic
- 0.1.2.1 Arctic Population Resiliency and Potential for Recovery
- 0.2 Priority Recommendations to Enhance NEBA Applications in the Arctic
- 0.2.1 Development of ARCAT Matrices
- 0.2.2 Influence of Oil on Unique Arctic Communities
- 0.2.3 Biodegradation in Unique Communities
- 0.2.4 Modeling of Acute and Chronic Population Effects of Exposure to OSRs
- 0.3 Further Information
- 1.0 THE PHYSICAL ENVIRONMENT
- 1.1 Introduction
- 1.1.1 The Arctic Ocean, Marginal Seas, and Basins
- 1.2 Knowledge Status
- 1.2.1 The Circumpolar Margins
- 1.2.2 Arctic Hydrography
- 1.2.3 Ice And Ice-Edges
- 1.2.4 Seasonality: Productivity and the Carbon Cycle in the Arctic
- 1.3 Future Research Considerations
- 1.3.1 Priority Recommendations to Enhance NEBA Applications in the Arctic
- 1.4 Further Information
- 2.0 ARCTIC ECOSYSTEMS AND VALUABLE RESOURCES
- 2.1 Introduction
- 2.2 Knowledge Status
- 2.2.1 Habitats of the Arctic
- 2.2.2 Arctic Food Webs
- 2.2.2.1 Pelagic Communities
- 2.2.2.2 Benthic and Demersal Communities
- 2.2.2.2 Sea-ice Communities
- 2.2.2.4 Mammals and Birds
- 2.2.2.5 Communities of Special Significance
- 2.2.3 Pelagic Realm
- 2.2.3.1 Phytoplankton
- 2.2.3.2 Zooplankton
- 2.2.3.3 Neuston
- 2.2.3.4 Other Pelagic Invertebrates
- 2.2.3.4.1 Krill
- 2.2.3.4.2 Amphipods
- 2.2.3.4.3 Cephalopods
- 2.2.3.4.4 Jellyfish
- 2.2.3.5 Fish
- 2.2.3.5.1 Pelagic Fish
- 2.2.3.5.2 Anadromous Fish
- 2.2.3.5.3 Demersal Fish
- 2.2.3.5.4 Deep-Sea Fish
- 2.2.3.6 Marine Mammals
- 2.2.3.6.1 Bowhead Whale (Balaena mysticetus)
- 2.2.3.6.2 White Whale (Delphinapterus Leucas)
- 2.2.3.6.3 Narwhal (Monodon monoceros)
- 2.2.3.6.4 Ice Seals
- 2.2.3.6.5 Walrus (Odobenus rosmarus)
- 2.2.3.6.6 Orca Whales (Orcinus orca)
- 2.2.3.6.7 Polar Bear (Ursus maritimus)
- 2.2.3.7 Birds
- 2.2.3.7.1 Black-legged kittiwakes (Rissa tridactyla)
- 2.2.3.7.2 Black Guillemots (Cepphus grille)
- 2.2.3.7.3 Thick billed Murres (Uria lomvia)
- 2.2.3.7.4 Northern Fulmar (Fulmarus glacialis)
- 2.2.3.7.5 Common Eider (Somateria mollissima)
- 2.2.3.7.6 Little Auk/Dovekie (Alle alle)
- 2.2.3.7.7 Glaucous gull (Larus glaucescens)
- 2.2.3.7.8 Arctic jaeger (Stercorarius parasiticus)
- 2.2.4 Benthic Realm
- 2.2.4.1 Intertidal Communities
- 2.2.4.2 Shelf and Deepwater Communities
- 2.2.4.3 Mollusca
- 2.2.4.4 Polychaetes
- 2.2.4.5 Amphipods
- 2.2.4.6 Decapod Crustaceans
- 2.2.4.7 Echinoderms
- 2.2.5 Sea-Ice Realm
- 2.2.5.1 Ice Algae
- 2.2.5.2 Sympagic Copepods
- 2.2.5.3 Ice Amphipods
- 2.2.5.4 Pelagic Copepods
- 2.2.5.5 Sympagic Fish
- 2.2.5.6 Mammals
- 2.2.5.7 Birds
- 2.2.6 VECs of Arctic Marine Environments
- 2.2.6.1 Seasonal Distribution Patterns of Arctic Marine Populations
- 2.3 Future Research Considerations
- 2.3.1 Priority Recommendations to Enhance NEBA Applications in the Arctic
- 2.4 Further Information
- 3.0 THE TRANSPORT AND FATE OF OIL IN THE ARCTIC
- 3.1 Introduction
- 3.2 Knowledge Status
- 3.2.1 Weathering of Oil Spilled in Ice
- 3.2.2 Oil in Ice Interactions
- 3.2.3 Oil on Arctic Shorelines
- 3.2.4 Oil-Sediment Interactions
- 3.3 Future Research Considerations
- 3.3.1 Priority Recommendations for Enhanced NEBA Applications in the Arctic
- 3.4 Further Information
- 4.0 OIL SPILL RESPONSE STRATEGIES
- 4.1 Introduction
- 4.1.1 Environmental Uniqueness of the Arctic Region in Relation to OSR
- 4.2 Knowledge Status - Impact of OSRs
- 4.2.1 Natural Attentuation
- 4.2.1.1 Potential Environmental Impact of Untreated Oil
- 4.2.1.2 Conclusions on Natural Attenuation
- 4.2.2 Mechanical Recovery and Containment
- 4.2.2.1 Environmental impacts from Mechanical Recovery and Containment
- 4.2.2.2 Conclusions
- 4.2.3 In-Situ Burning and Chemical Herders
- 4.2.3.1 Potential environmental and human health effects of ISB residues and unburnt oil
- 4.2.3.2 Environmental Impact of Herders
- 4.2.3.3 Conclusions on ISB and Herders
- 4.2.4 Improving Dispersion of Oil
- 4.2.4.1 Impact of Chemically Dispersed Oil
- 4.2.4.2 Conclusions on Chemical Dispersion
- 4.2.4.3 Dispersing Oil using Oil Mineral Aggregates (OMA)
- 4.2.4.4 Environmental Impact of OMA formation
- 4.2.4.5 Conclusions on OMA
- 4.3 Future Research Considerations
- 4.3.1 Priority Recommendations for Enhanced NEBA Applications in the Arctic
- 4.4 Further Information
- 5.0 BIODEGRADATION
- 5.1 Introduction
- 5.1.1 The Microbiology of the Arctic Oceans
- 5.1.1.1 Transport routes
- 5.1.1.2 Microbial populations in the Arctic Ocean
- 5.1.2 Microbial Adaptation to Arctic Conditions
- 5.1.2.1 Low temperature and microbial adaptions
- 5.1.2.2 Light and microbial phototrophs
- 5.1.2.3 Marine ice and microbial survival and metabolism
- 5.2 Knowledge Status
- 5.2.1 Biodegradation of Oil in Cold Marine Environments
- 5.2.1.1 Types of Crude Oils
- 5.2.1.2 Surface oil spills
- 5.2.1.2.1 Evaporation
- 5.2.1.2.2 Water solubility
- 5.2.1.2.3 Photooxidation
- 5.2.1.2.4 Sedimentation
- 5.2.1.2.5 Water-in-oil emulsification
- 5.2.1.2.6 Natural dispersion
- 5.2.1.2.7 Oil films
- 5.2.1.3 Microbial Oil-Degrading Populations in Cold Water Environments
- 5.2.1.3.1 Indigenous Microorganism Populations
- 5.2.1.3.2 Population Effects on Oil Degradation
- 5.2.1.4 Hydrocarbon biodegradation in cold marine environments
- 5.2.1.4.1 Seawater
- 5.2.1.4.2 Sediments and soils
- 5.2.1.4.3 Sea ice
- 5.2.1.5 Modeling of biodegradation
- 5.2.1.5.1 Biodegradation in oil spill models
- 5.2.1.5.2 Biodegradation modeling and temperature
- 5.2.1.6 Determination of Biodegradation
- 5.2.1.6.1 Analytical methods for oil compound analyses
- 5.2.1.6.2 Experimental apparatus
- 5.2.1.6.3 Biodegradation data processing
- 5.2.1.7 Persistent Oil Compounds
- 5.2.2 Accelerated Biodegradation
- 5.2.2.1 Biostimulation
- 5.2.2.1.1 Shoreline sediments
- 5.2.2.1.2 Seawater
- 5.2.2.1.3 Marine ice
- 5.2.2.2 Bioaugmentation
- 5.2.2.3 Understanding Processes in Accelerated Biodegradation
- 5.3 Future Research Considerations
- 5.3.1 Priority Recommendations for Enhanced NEBA Applications in the Arctic
- 5.4 Further Information
- 6.0 ECOTOXICOLOGY OF OIL AND TREATED OIL IN THE ARCTIC
- 6.1 Introduction
- 6.1.1 General Methods and Relevant Endpoints in Laboratory Testing
- 6.1.1.1 Test Exposure
- 6.1.1.2 Test Media Preparation
- 6.1.1.2.1 Water Soluble Fractions (WSF)
- 6.1.1.2.2 Water Accommodated Fractions (WAF, CEWAF)
- 6.1.1.2.3 Oil-in-Water Dispersions (Oil Droplets)
- 6.1.1.2.4 Oil Type/Weathering
- 6.1.1.2.5 Exposure Concentrations
- 6.1.1.2.6 Test Organisms
- 6.1.1.2.7 Test Endpoints and Exposures
- 6.1.1.2.8 Data Extrapolation and Population Models
- 6.2 Knowledge Status
- 6.2.1 Species represented in the data set
- 6.2.2 Arctic ecosystem compartments in the dataset
- 6.2.2.1 Pack ice
- 6.2.2.2 Pelagic
- 6.2.2.3 Benthic
- 6.2.3 Review by Taxa
- 6.2.3.1 Phytoplankton and seaweed
- 6.2.3.2 Mysids
- 6.2.3.3 Copepods
- 6.2.3.4 Amphipods
- 6.2.3.5 Benthic organisms
- 6.2.3.6 Fish
- 6.3 Discussion
- 6.3.1 Petroleum related components
- 6.3.1.1 Crude oil
- 6.3.1.2 Single PAH
- 6.3.2 Chemically dispersed oil versus physically dispersed oil
- 6.3.3 Are Arctic species more sensitive than temperate species?
- 6.4 Future Research Considerations
- 6.4.1 Priority Recommendations to Enhance NEBA Applications in the Arctic
- 6.5 Further Information
- 7.0 POPULATION EFFECTS MODELING
- 7.1 Introduction
- 7.2 Knowledge Status
- 7.2.1 Parameters Needed to Assess Potential Responses of VECs to Environmental Stressors
- 7.2.1.1 Transport and fate / exposure potential
- 7.2.1.2 Oil toxicity evaluations / sensitivity
- 7.2.1.3 Population distributions, stressors, and mortality rates
- 7.2.2 Copepod Population Ecology
- 7.2.2.1 Copepod Growth and Development
- 7.2.2.2 Summary of Arctic and Sub-Arctic Copepod Species
- 7.2.3 Copepod Populations
- 7.2.4 Arctic Fish Population Ecology
- 7.2.4.1 Arctic Fish Species Diversity
- 7.2.4.2 Representative Fish Species
- 7.2.5 Application of Population Models
- 7.3 Future Research Considerations
- 7.3.1 Priority Recommendations to Enhance NEBA Applications in the Arctic
- 7.4 Further Information
- 8.0 ECOSYSTEM RECOVERY
- 8.1 Introduction
- 8.2 Knowledge Status
- 8.2.1 Resilience and Potential for Recovery
- 8.3 Future Research Considerations
- 8.3.1 Priority Recommendations for Enhanced NEBA Applications in the Arctic
- 8.4 Further Information
- 9.0 NET ENVIRONMENTAL BENEFIT ANALYSES FOR OIL SPILL
- 9.1 Introduction
- 9.2 Knowledge Status
- 9.2.1 Importance of NEBA Development for Arctic Regions
- 9.2.2 Scope and Applicability
- 9.2.3 Information Required to Utilize the NEBA Process
- 9.2.3.1 Potential oil spill scenarios
- 9.2.3.2 Response resources available
- 9.2.4 Ecological Resources at Risk
- 9.2.5 Social and Economic Relevance
- 9.2.6 Historical uses of NEBA and Case Studies
- 9.2.6.1 Assessing response strategy effectiveness and estimating oil fate and transport
- 9.2.6.2 Assessing the potential impacts and resource recovery rates
- 9.2.7 Historical Spills that Used or Informed NEBA Processes
- 9.2.7.1 A. Experimental: Baffin Island tests in northern Canada
- 9.2.7.2 B. Experimental: TROPICS study
- 9.2.7.3 C. Tanker: Braer Spill
- 9.2.7.4 D. Tanker: Sea Empress spill
- 9.2.7.5 E. Well Blowout: Montara spill (also known as the West Atlas Spill)
- 9.2.8 Potential Challenges to Applying NEBA Processes in the Arctic Environment
- 9.3 Future Research Considerations
- 9.3.1 Priority Recommendations for Enhanced NEBA Applications in the Arctic
- 9.4 Further Information
- APPENDIX: USE OF NEDRA IN CONNECTION TO OIL SPILL CONTINGENCY PLANNING IN NORWAY
- 10.0 SUPPORTING REPORTS
Add notes to:
Or add a reference to download later
5.2.1.4 Hydrocarbon biodegradation in cold marine environments
In general, biodegradation of oil compounds is expected to follow the order n-alkanes > branched alkanes > low molecular weight aromatics > cyclic alkanes (Perry 1984). In cold seawater the same order is expected, although degradation will be highly influenced by the physico-chemical characteristics of the oil. The low temperature affects both dissolution from the non-aqueous (crude oil) to the aqueous phase (Schluep et al. 2001), and evaporation of volatile compounds, as described above.
5.2.1.4.1 Seawater
At temperatures above the freezing point of seawater (approximately -1.8°C) biodegradation of crude oil hydrocarbons is well documented. This is exemplified in Figure 5-2, showing the mineralization curves of 14C-labelled naphthalene, phenanthrene and hexadecane in seawater at 0°C when the compounds were spiked into crude paraffinic oil. Degradation of the n-alkane (hexadecane) was faster than for the aromatic compounds, and a smaller aromatic (naphthalene; 2-ring) degraded faster than larger aromatics (phenanthrene; 3-ring). This pattern followed the generally accepted order of crude oil compound biodegradation described above.
One of the first attempts to study oil biodegradation in Arctic seawater at low temperatures (2-11°C) showed that shifts in microbial populations towards more oil-degrading bacteria, that abiotic oil losses were lower than expected, and that various classes of hydrocarbons (saturates, mono-, di- and polyaromatics) were subject to biodegradation (Horowitz and Atlas 1977). Several studies have compared oil biodegradation in seawater or with bacterial cultures at different temperatures, and results from some of these including temperatures relevant for the Arctic are summarized in Table 5-1.
In summary, these and most other relevant studies (e.g. MacNaughton et al. 2003) show slower biodegradation by lowering of the temperature, but the results also show that biodegradation at low seawater temperature is considerable. In a recent study with low concentrations (2.5 mg/L) of Alaska North Slope oil with Atlantic seawater, 80% was biodegraded (saturates, 2- to 4-ring aromatics) after 60 days at 8°C (Prince et al. 2012). While laboratory studies indicate that biodegradation in Arctic seawater may be slower than in temperate seawater, these results have not been confirmed by field studies. Seasonal biodegradation data and comparison of oil biodegradation from different geographic areas with the same oils and analytical procedures may be necessary to test these assumptions. Oil characteristics should also be addressed in more detail, for instance, by comparison of dispersed oil biodegradation of different oil types and weathering degrees at several seawater temperatures. The physical properties of oil may decrease bioavailability of oil (e.g. larger droplets at lower temperatures would increase the surface area-to-volume ratio).
Table 5-1. Summary of selected biodegradation studies performed at different seawater temperatures
Oils | Inocula | Time (days) | Components | Temp. (°C) | Results | References |
---|---|---|---|---|---|---|
Fresh Prudhoe Bay crude (dispersions) |
Mixed consortium |
28 |
nC10-nC35 alkanes and 2-4 ring aromatics |
20 |
A)K1=0.13-0.23 (t½=3-5 days) |
Venosa and Holder 1997 |
5 |
A)K1=0.052-0.093 (t½=7-13 days |
|||||
Weathered Alaska North Slope (dispersions) |
Mixed consortium |
90 |
GC-MS detectable |
20 |
61.5 % biodegradation |
Garrett et al. 2003 |
6 |
48 % biodegradation |
|||||
Diesel oil (dispersions) |
Two Antarctic strains |
60 |
GC-FID detectable |
20 |
75-86 % biodegradation |
Michaud et al. 2004 |
4 |
55-58 % biodegradation |
|||||
Fresh Statfjord oil (immobilized films) |
Natural seawater |
56 |
nC10-nC36 alkanes |
5 |
95 % biodegradation |
Brakstad et al. 2006 |
0 |
32 % biodegradation |
|||||
Arabian light crude oil (dispersion) |
Natural Antarctic seawater |
50 |
nC17/Pristane ratio |
20 |
B)40 % reduction |
Delille et al. 2009 |
10 |
B)47 % reduction |
|||||
4 |
B)20 % reduction |
A) k1 is first-order rate coefficient; t½ is half-life (0.69/k1) B) Reduction determined by comparison to sterile controls
5.2.1.4.2 Sediments and soils
Several biodegradation studies of oil in Arctic sediments have been conducted, most of these to investigate the potential for bioremediation of stranded oil in the Arctic (see later chapter). Studies on oil pollution of Arctic and Antarctic beaches has demonstrated the presence of indigenous hydrocarbon-degrading bacteria in these pristine environments (e.g. Grossman et al. 2000; Delille and Delille 2000; Powell et al. 2005). Oil removal from beach sediments may be attributed to several processes, including physical removal, photooxidation and biodegradation. For instance, significant depletion of total hydrocarbon concentrations and mineralization of radiolabelled hexadecane have been measured in Canadian Arctic soils at 4°C (Greer 2008). Anaerobic biodegradation has also been measured in the Arctic. Low-temperature degradation of PAH-compounds was reported from Arctic soils under anoxic and nitrate-reducing conditions at 7°C (Eriksson et al. 2003). In the Arctic winter the upper parts of marine sediments become frozen. Whether biodegradation stops or continues at very slow rates under these conditions is not known, although microbial activity at subzero temperatures has been demonstrated (Doyle et al. 2012). Several studies with oil-contaminated freeze-thaw cycled soil or permafrost have shown that microbial respiration takes place even at subzero temperatures and hydrocarbon degradation was observed (Rike et al. 2003; Børresen et al. 2007; Chang et al. 2011). These studies therefore demonstrate that the lower limit for biodegradation can be below the freezing point.
5.2.1.4.3 Sea ice
If oil spills reach the marginal ice zone, the ice may become oil-infested. Once trapped within the ice, ocean currents can transport the oil over large distances. A secondary discharge situation occurs during the spring melt season and, if the ice has been transported from the original spill site, this can result in contamination of new locations. In the spring and summer seasons, chemical alteration of the crude oil through photooxidation may also become an important process (Refer to Section 3). Although the immediate impact of oil spills in ice has been studied (e.g. Fingas and Hollebone 2003) and is fairly well understood, little is known about the long-term fate and effects of such pollutants on ecosystems in polar environments. To date, few studies have attempted to determine the transport and fate of individual water-soluble oil components in sea ice. However, data from some recent studies have shown that the more water-soluble compounds (mainly naphthalenes, phenanthrenes and dibenzothiophenes) migrate through the brine channels in the ice (Figure 5-3). As a result, such compounds come into contact with sea ice microbes in the brine and the underlying water (Faksness and Brandvik 2008a; Faksness and Brandvik 2008b).
In line with the results from studies with Arctic soils one should expect that biodegradation may also take place in marine ice at subzero temperatures. As described earlier, microbial metabolism and motility have been measured in the brine channels of marine ice (Breezee et al. 2004; June et al. 2002; Junge et al. 2003; Junge et al. 2004; Junge et al. 2006; Mykytzuk et al. 2013). However, biodegradation of oil in marine ice has not yet been fully investigated. In a winter field study (February to June) performed on Svalbard with crude oil frozen into fjord ice, a slow reduction in the ratio between naphthalene and phenanthrene was measured in the parts of the ice with downward migration of soluble compounds, while no significant change in n-C17/Pristane was measured, as shown in Figure 5-3 (Brakstad et al. 2008). However, the bulk oil stimulated bacterial biomass, including a few bacterial genera expected to be oil-degraders (Brakstad et al. 2008). The results from another field study performed at Svalbard showed that no significant degradation of oil hydrocarbons occurred in the ice at subzero temperatures, but at 0°C melt pool oil samples fertilized with inorganic nutrients showed a significant change in bacterial diversity (Gerdes and Dieckmann 2006). Marine ice represents an extreme environment for life. The combination of low temperature and high salt content in the brine channels require that microbes be both halo- and psychro-tolerant. Extremely halophilic or halotolerant microbes able to degrade oil have been reported (e.g. Diaz et al. 2002, Al-Mailem et al. 2010), but not so far in cold environments. However, as described above, it has been demonstrated that oil pollution in marine ice may stimulate the growth of a few specific bacteria (Brakstad et al. 2008), but the ability to degrade oil compounds needs to be clarified. In addition, most oils will also be solidified under these conditions, but the migrating water-soluble compounds may be relevant target compounds for oil-degrading bacteria in this environment. If this is true, bacteria able to degrade small aromatics may be more relevant than alkane-degrading bacteria.