- 0.0 EXECUTIVE SUMMARY
- 0.1 Program Objectives and Participants
- 0.1.1 The Pan-Arctic Region: Highlights of the Literature Review
- 0.1.1.1 Behavior and Fate of Oil in the Arctic
- 0.1.1.2 VECs and Ecotoxicity
- 0.1.2 Role of Ecosystem Consequence Analyses in NEBA Applications for the Arctic
- 0.1.2.1 Arctic Population Resiliency and Potential for Recovery
- 0.2 Priority Recommendations to Enhance NEBA Applications in the Arctic
- 0.2.1 Development of ARCAT Matrices
- 0.2.2 Influence of Oil on Unique Arctic Communities
- 0.2.3 Biodegradation in Unique Communities
- 0.2.4 Modeling of Acute and Chronic Population Effects of Exposure to OSRs
- 0.3 Further Information
- 1.0 THE PHYSICAL ENVIRONMENT
- 1.1 Introduction
- 1.1.1 The Arctic Ocean, Marginal Seas, and Basins
- 1.2 Knowledge Status
- 1.2.1 The Circumpolar Margins
- 1.2.2 Arctic Hydrography
- 1.2.3 Ice And Ice-Edges
- 1.2.4 Seasonality: Productivity and the Carbon Cycle in the Arctic
- 1.3 Future Research Considerations
- 1.3.1 Priority Recommendations to Enhance NEBA Applications in the Arctic
- 1.4 Further Information
- 2.0 ARCTIC ECOSYSTEMS AND VALUABLE RESOURCES
- 2.1 Introduction
- 2.2 Knowledge Status
- 2.2.1 Habitats of the Arctic
- 2.2.2 Arctic Food Webs
- 2.2.2.1 Pelagic Communities
- 2.2.2.2 Benthic and Demersal Communities
- 2.2.2.2 Sea-ice Communities
- 2.2.2.4 Mammals and Birds
- 2.2.2.5 Communities of Special Significance
- 2.2.3 Pelagic Realm
- 2.2.3.1 Phytoplankton
- 2.2.3.2 Zooplankton
- 2.2.3.3 Neuston
- 2.2.3.4 Other Pelagic Invertebrates
- 2.2.3.4.1 Krill
- 2.2.3.4.2 Amphipods
- 2.2.3.4.3 Cephalopods
- 2.2.3.4.4 Jellyfish
- 2.2.3.5 Fish
- 2.2.3.5.1 Pelagic Fish
- 2.2.3.5.2 Anadromous Fish
- 2.2.3.5.3 Demersal Fish
- 2.2.3.5.4 Deep-Sea Fish
- 2.2.3.6 Marine Mammals
- 2.2.3.6.1 Bowhead Whale (Balaena mysticetus)
- 2.2.3.6.2 White Whale (Delphinapterus Leucas)
- 2.2.3.6.3 Narwhal (Monodon monoceros)
- 2.2.3.6.4 Ice Seals
- 2.2.3.6.5 Walrus (Odobenus rosmarus)
- 2.2.3.6.6 Orca Whales (Orcinus orca)
- 2.2.3.6.7 Polar Bear (Ursus maritimus)
- 2.2.3.7 Birds
- 2.2.3.7.1 Black-legged kittiwakes (Rissa tridactyla)
- 2.2.3.7.2 Black Guillemots (Cepphus grille)
- 2.2.3.7.3 Thick billed Murres (Uria lomvia)
- 2.2.3.7.4 Northern Fulmar (Fulmarus glacialis)
- 2.2.3.7.5 Common Eider (Somateria mollissima)
- 2.2.3.7.6 Little Auk/Dovekie (Alle alle)
- 2.2.3.7.7 Glaucous gull (Larus glaucescens)
- 2.2.3.7.8 Arctic jaeger (Stercorarius parasiticus)
- 2.2.4 Benthic Realm
- 2.2.4.1 Intertidal Communities
- 2.2.4.2 Shelf and Deepwater Communities
- 2.2.4.3 Mollusca
- 2.2.4.4 Polychaetes
- 2.2.4.5 Amphipods
- 2.2.4.6 Decapod Crustaceans
- 2.2.4.7 Echinoderms
- 2.2.5 Sea-Ice Realm
- 2.2.5.1 Ice Algae
- 2.2.5.2 Sympagic Copepods
- 2.2.5.3 Ice Amphipods
- 2.2.5.4 Pelagic Copepods
- 2.2.5.5 Sympagic Fish
- 2.2.5.6 Mammals
- 2.2.5.7 Birds
- 2.2.6 VECs of Arctic Marine Environments
- 2.2.6.1 Seasonal Distribution Patterns of Arctic Marine Populations
- 2.3 Future Research Considerations
- 2.3.1 Priority Recommendations to Enhance NEBA Applications in the Arctic
- 2.4 Further Information
- 3.0 THE TRANSPORT AND FATE OF OIL IN THE ARCTIC
- 3.1 Introduction
- 3.2 Knowledge Status
- 3.2.1 Weathering of Oil Spilled in Ice
- 3.2.2 Oil in Ice Interactions
- 3.2.3 Oil on Arctic Shorelines
- 3.2.4 Oil-Sediment Interactions
- 3.3 Future Research Considerations
- 3.3.1 Priority Recommendations for Enhanced NEBA Applications in the Arctic
- 3.4 Further Information
- 4.0 OIL SPILL RESPONSE STRATEGIES
- 4.1 Introduction
- 4.1.1 Environmental Uniqueness of the Arctic Region in Relation to OSR
- 4.2 Knowledge Status - Impact of OSRs
- 4.2.1 Natural Attentuation
- 4.2.1.1 Potential Environmental Impact of Untreated Oil
- 4.2.1.2 Conclusions on Natural Attenuation
- 4.2.2 Mechanical Recovery and Containment
- 4.2.2.1 Environmental impacts from Mechanical Recovery and Containment
- 4.2.2.2 Conclusions
- 4.2.3 In-Situ Burning and Chemical Herders
- 4.2.3.1 Potential environmental and human health effects of ISB residues and unburnt oil
- 4.2.3.2 Environmental Impact of Herders
- 4.2.3.3 Conclusions on ISB and Herders
- 4.2.4 Improving Dispersion of Oil
- 4.2.4.1 Impact of Chemically Dispersed Oil
- 4.2.4.2 Conclusions on Chemical Dispersion
- 4.2.4.3 Dispersing Oil using Oil Mineral Aggregates (OMA)
- 4.2.4.4 Environmental Impact of OMA formation
- 4.2.4.5 Conclusions on OMA
- 4.3 Future Research Considerations
- 4.3.1 Priority Recommendations for Enhanced NEBA Applications in the Arctic
- 4.4 Further Information
- 5.0 BIODEGRADATION
- 5.1 Introduction
- 5.1.1 The Microbiology of the Arctic Oceans
- 5.1.1.1 Transport routes
- 5.1.1.2 Microbial populations in the Arctic Ocean
- 5.1.2 Microbial Adaptation to Arctic Conditions
- 5.1.2.1 Low temperature and microbial adaptions
- 5.1.2.2 Light and microbial phototrophs
- 5.1.2.3 Marine ice and microbial survival and metabolism
- 5.2 Knowledge Status
- 5.2.1 Biodegradation of Oil in Cold Marine Environments
- 5.2.1.1 Types of Crude Oils
- 5.2.1.2 Surface oil spills
- 5.2.1.2.1 Evaporation
- 5.2.1.2.2 Water solubility
- 5.2.1.2.3 Photooxidation
- 5.2.1.2.4 Sedimentation
- 5.2.1.2.5 Water-in-oil emulsification
- 5.2.1.2.6 Natural dispersion
- 5.2.1.2.7 Oil films
- 5.2.1.3 Microbial Oil-Degrading Populations in Cold Water Environments
- 5.2.1.3.1 Indigenous Microorganism Populations
- 5.2.1.3.2 Population Effects on Oil Degradation
- 5.2.1.4 Hydrocarbon biodegradation in cold marine environments
- 5.2.1.4.1 Seawater
- 5.2.1.4.2 Sediments and soils
- 5.2.1.4.3 Sea ice
- 5.2.1.5 Modeling of biodegradation
- 5.2.1.5.1 Biodegradation in oil spill models
- 5.2.1.5.2 Biodegradation modeling and temperature
- 5.2.1.6 Determination of Biodegradation
- 5.2.1.6.1 Analytical methods for oil compound analyses
- 5.2.1.6.2 Experimental apparatus
- 5.2.1.6.3 Biodegradation data processing
- 5.2.1.7 Persistent Oil Compounds
- 5.2.2 Accelerated Biodegradation
- 5.2.2.1 Biostimulation
- 5.2.2.1.1 Shoreline sediments
- 5.2.2.1.2 Seawater
- 5.2.2.1.3 Marine ice
- 5.2.2.2 Bioaugmentation
- 5.2.2.3 Understanding Processes in Accelerated Biodegradation
- 5.3 Future Research Considerations
- 5.3.1 Priority Recommendations for Enhanced NEBA Applications in the Arctic
- 5.4 Further Information
- 6.0 ECOTOXICOLOGY OF OIL AND TREATED OIL IN THE ARCTIC
- 6.1 Introduction
- 6.1.1 General Methods and Relevant Endpoints in Laboratory Testing
- 6.1.1.1 Test Exposure
- 6.1.1.2 Test Media Preparation
- 6.1.1.2.1 Water Soluble Fractions (WSF)
- 6.1.1.2.2 Water Accommodated Fractions (WAF, CEWAF)
- 6.1.1.2.3 Oil-in-Water Dispersions (Oil Droplets)
- 6.1.1.2.4 Oil Type/Weathering
- 6.1.1.2.5 Exposure Concentrations
- 6.1.1.2.6 Test Organisms
- 6.1.1.2.7 Test Endpoints and Exposures
- 6.1.1.2.8 Data Extrapolation and Population Models
- 6.2 Knowledge Status
- 6.2.1 Species represented in the data set
- 6.2.2 Arctic ecosystem compartments in the dataset
- 6.2.2.1 Pack ice
- 6.2.2.2 Pelagic
- 6.2.2.3 Benthic
- 6.2.3 Review by Taxa
- 6.2.3.1 Phytoplankton and seaweed
- 6.2.3.2 Mysids
- 6.2.3.3 Copepods
- 6.2.3.4 Amphipods
- 6.2.3.5 Benthic organisms
- 6.2.3.6 Fish
- 6.3 Discussion
- 6.3.1 Petroleum related components
- 6.3.1.1 Crude oil
- 6.3.1.2 Single PAH
- 6.3.2 Chemically dispersed oil versus physically dispersed oil
- 6.3.3 Are Arctic species more sensitive than temperate species?
- 6.4 Future Research Considerations
- 6.4.1 Priority Recommendations to Enhance NEBA Applications in the Arctic
- 6.5 Further Information
- 7.0 POPULATION EFFECTS MODELING
- 7.1 Introduction
- 7.2 Knowledge Status
- 7.2.1 Parameters Needed to Assess Potential Responses of VECs to Environmental Stressors
- 7.2.1.1 Transport and fate / exposure potential
- 7.2.1.2 Oil toxicity evaluations / sensitivity
- 7.2.1.3 Population distributions, stressors, and mortality rates
- 7.2.2 Copepod Population Ecology
- 7.2.2.1 Copepod Growth and Development
- 7.2.2.2 Summary of Arctic and Sub-Arctic Copepod Species
- 7.2.3 Copepod Populations
- 7.2.4 Arctic Fish Population Ecology
- 7.2.4.1 Arctic Fish Species Diversity
- 7.2.4.2 Representative Fish Species
- 7.2.5 Application of Population Models
- 7.3 Future Research Considerations
- 7.3.1 Priority Recommendations to Enhance NEBA Applications in the Arctic
- 7.4 Further Information
- 8.0 ECOSYSTEM RECOVERY
- 8.1 Introduction
- 8.2 Knowledge Status
- 8.2.1 Resilience and Potential for Recovery
- 8.3 Future Research Considerations
- 8.3.1 Priority Recommendations for Enhanced NEBA Applications in the Arctic
- 8.4 Further Information
- 9.0 NET ENVIRONMENTAL BENEFIT ANALYSES FOR OIL SPILL
- 9.1 Introduction
- 9.2 Knowledge Status
- 9.2.1 Importance of NEBA Development for Arctic Regions
- 9.2.2 Scope and Applicability
- 9.2.3 Information Required to Utilize the NEBA Process
- 9.2.3.1 Potential oil spill scenarios
- 9.2.3.2 Response resources available
- 9.2.4 Ecological Resources at Risk
- 9.2.5 Social and Economic Relevance
- 9.2.6 Historical uses of NEBA and Case Studies
- 9.2.6.1 Assessing response strategy effectiveness and estimating oil fate and transport
- 9.2.6.2 Assessing the potential impacts and resource recovery rates
- 9.2.7 Historical Spills that Used or Informed NEBA Processes
- 9.2.7.1 A. Experimental: Baffin Island tests in northern Canada
- 9.2.7.2 B. Experimental: TROPICS study
- 9.2.7.3 C. Tanker: Braer Spill
- 9.2.7.4 D. Tanker: Sea Empress spill
- 9.2.7.5 E. Well Blowout: Montara spill (also known as the West Atlas Spill)
- 9.2.8 Potential Challenges to Applying NEBA Processes in the Arctic Environment
- 9.3 Future Research Considerations
- 9.3.1 Priority Recommendations for Enhanced NEBA Applications in the Arctic
- 9.4 Further Information
- APPENDIX: USE OF NEDRA IN CONNECTION TO OIL SPILL CONTINGENCY PLANNING IN NORWAY
- 10.0 SUPPORTING REPORTS
Add notes to:
Or add a reference to download later
7.3 Future Research Considerations
The review of population effects modeling described by the authors in this section led to suggestions of further research which can reduce remaining uncertainties. The following areas of work will improve the ability to predict long term consequences of OSR residuals and reduce the total ecological effect of an oil spill. The more generic suggestions compiled from this review are summarized below while recommendations that are important for improving Arctic NEBA are listed separately.
- VECs. Obtain a better understanding of the vertical and horizontal spatial patterns of VEC species/age class abundances. Baseline surveys conducted as part of environmental impact assessments at oil and gas production sites in the Arctic will help fill this knowledge gap on a regional basis. It will be important to synthesize this information and augment currently available data with full season baseline information. It is also advisable that the data output become open-source materials.
- Develop spatial and reproductive population metrics for VECs (other than polar cod and copepods). Expand information on species/populations that have minimal population/age structure/reproductive information available. These efforts should, for instance, include the capelin (Mallotus villosus), the Arctic Cisco (Coregonus autumnalis) for near shore environments and the Pacific and Atlantic herring (Clupea spp) for rocky intertidal and open ocean SML environments. Other phyla such as mammals and seabirds should also be investigated, especially in terms of resiliency and recovery potential.
- Seasonality: Establish seasonal distribution patterns of principal VECs including seabirds and marine mammals; concentrate on their seasonal use of ECs
- Increase understanding of the offshore feeding and resting habits of birds.
- Identify EC usage by VEC populations on a seasonal basis – use the EC as a surrogate for the potential presence/absence of VECs
- Determine population dynamics information for EC usage leading to better quantification of population dynamics for marine mammals.
- Augment ESIs for nearshore and offshore marine ecosystems along the global Arctic areas of interest.
- ECs. Identify key ECs and features of the Arctic that provide more valuable habitat for these VEC species/age classes. Concentrate on key fish and crustaceans that we already have useful data including the Arctic cod, Boreogadus saida, the sculpin, Myoxocephalus spp, and the calanoid copepods C. glacialis and C. finmarchicus.
- OSR residuals. We have significant information on the toxicity of dispersants and physically and chemically dispersed oil in open water, pelagic environments that indicate that Arctic species have similar acute responses to measured concentrations of oil; however, there is less information on the toxicity of oil residuals from in-situ burning processes. OMA treated oil greatly reduces the quantity of oil on the surface of the sea but the physical and chemical effects that might occur on bottom communities is less well known.
7.3.1 Priority Recommendations to Enhance NEBA Applications in the Arctic
The recommendations presented below indicate where increased knowledge of population modeling would result in reducing existing uncertainties in NEBA assessments. No prioritization has been made to the list; for some of the recommendations, surrogate data may be already available.
- VECs. Obtain more information on population dynamics and age-related characteristics of populations that are key components of food webs leading to VECs.
- These characteristics need to be refined by the seasonal EC occupancy and include changes in mortality coefficients, age/size population structure, variation in abundance or standing crop of populations and the relative potential for recovery based on population or species resiliency characteristics.
- The key invertebrates for the under ice environmental compartment include the autochthonous ice fauna amphipods, Gammarus wilkitzkii, Apherusa glacialis, Onisimus nanseni and O. glacialis. They are also important VECs for seabirds and marine mammals that forage in this part of the Arctic. Although there is significant information on the distribution of these species in part of the Arctic, seasonal reproductive patterns, natural mortality rates and toxicity studies on different age classes would provide the information necessary for an assessment of the potential impacts on this important environmental compartment.
- Evaluate oil encounter rates by VECs. Obtain further information on direct effects of OSR residuals as they relate to resource encounter rates; this information will improve population-level impact assessments via the use of population models. Compare the population abundance information for VEC species within each compartment to determine the potential exposed population.
- Then compare the impact based on toxicology information on the exposed populations within each compartment (acute and chronic lethal and sublethal effects).
- Relate the impact on these key species to the potential impact at the next link in the food web.
- Formulate population and environmental compartment resiliency scores. Develop a resilience scoring method that provides a semi-quantitative characterization of VECs ability for population recovery within various ECs and determination of forecast health/sustainability of the various ECs
- Factors to consider are: reproductive potential, species sensitivity, exposure potential (encounter rates), exposure reductions (biodegradation, evaporation, dissolution, etc.)
- Determine whether a 20% reduction in adults or juveniles and larvae is detectable within the natural variation of populations (i.e. would maintain a sustainable population size)
- Resiliency attributes may include: fecundity, immigration/emigration of species or populations, population sizes, structural and functional community measures
- For example, for commercial fisheries assessment an indicator of sustainable harvest of adult females from a population is based on harvests that are less than recruitment overfishing thresholds that provide for harvests of ~20% of these adults (Roberts 2007).
- Modeling Improvements. Augment modeling parameters to achieve overarching sustainability assessment (affected species/populations ability recover from damage).
- Incorporate population and compartment specific information for OSR residuals and comparison to resiliency and recovery scores.